TTT2 with Termination Templates for Teaching

Jonas Schöpf and Christian Sternagel

Department of Computer Science
University of Innsbruck

16th International Workshop on Termination
Oxford

July 19, 2018
Motivation

\[f(x, g(x)) \rightarrow g(f(x, x)) \]
\[f(x, x) \rightarrow h(g(x)) \]
\[g(f(x, x)) \rightarrow f(h(x), x) \]
Motivation

\[f(x, g(x)) \rightarrow g(f(x, x)) \]
\[f(x, x) \rightarrow h(g(x)) \]
\[g(f(x, x)) \rightarrow f(h(x), x) \]

Correct Termination Proofs?

Student 1:
\[w_0 = 1 \]
\[w(f) = 4, w(g) = 2, w(h) = 1 \]

Student 2:
\[h(x) = x \]
\[f(x, y) = 8x + 24y + 16 \]
\[g(x) = x + 1 \]

Student 3:
\[h(x) = \begin{pmatrix} 1 & 4 \\ 0 & 0 \end{pmatrix} x \]
\[f(x, y) = \begin{pmatrix} 1 & 15 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 16 & 1 \\ 0 & 0 \end{pmatrix} y + \begin{pmatrix} 8 & 0 \end{pmatrix} \]
\[g(x) = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} x + \begin{pmatrix} 1 & 0 \end{pmatrix} \]
Motivation

\[f(x, g(x)) \rightarrow g(f(x, x)) \]
\[f(x, x) \rightarrow h(g(x)) \]
\[g(f(x, x)) \rightarrow f(h(x), x) \]

Correct Termination Proofs?

student 1:

\[w_0 = 1 \]
\[w(f) = 4, w(g) = 2, w(h) = 1 \]
\[h > f > g \]
Motivation

\[f(x, g(x)) \rightarrow g(f(x, x)) \]
\[f(x, x) \rightarrow h(g(x)) \]
\[g(f(x, x)) \rightarrow f(h(x), x) \]

Correct Termination Proofs?

student 1:

\[w_0 = 1 \]
\[w(f) = 4, w(g) = 2, w(h) = 1 \]
\[h > f > g \]

student 2:

\[[h](x) = x \]
\[[f](x, y) = 8x + 24y + 16 \]
\[[g](x) = x + 1 \]
Motivation

\[
f(x, g(x)) \rightarrow g(f(x, x))
\]

\[
f(x, x) \rightarrow h(g(x))
\]

\[
g(f(x, x)) \rightarrow f(h(x), x)
\]

Correct Termination Proofs?

student 1:

\[
w_0 = 1
\]

\[
w(f) = 4, w(g) = 2, w(h) = 1
\]

\[
h > f > g
\]

student 2:

\[
[h](x) = x
\]

\[
[f](x, y) = 8x + 24y + 16
\]

\[
g](x) = x + 1
\]

student 3:

\[
[h](x) = \begin{pmatrix} 1 & 4 \\ 0 & 0 \end{pmatrix} x
\]

\[
[f](x, y) = \begin{pmatrix} 1 & 15 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 16 & 1 \\ 0 & 0 \end{pmatrix} y + \begin{pmatrix} 8 \\ 0 \end{pmatrix}
\]

\[
g](x) = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]
Overview

- main idea
- \(TTT_2 \)
Overview

- main idea
- \(TTT_2 \)
- template mechanism
- URL encoding via the web interface
Main Idea

- check specific proofs with \(T_1T_2 \)
Main Idea

- check specific proofs with $T_1 T_2$
- modify proof construction
Main Idea

- check specific proofs with $T_1 T_2$
- modify proof construction
- provide a mechanism to show termination examples
Main Idea

- check specific proofs with $T_T T_2$
- modify proof construction
- provide a mechanism to show termination examples
- in general: make $T_T T_2$ more useful for teaching
Main Idea

- check specific proofs with $T_1 T_2$
- modify proof construction
- provide a mechanism to show termination examples
- in general: make $T_1 T_2$ more useful for teaching

Solve following Questions

- is the following termination proof correct?
- exists another termination proof with specific parameters?
- ...

J. Schöpf, C. Sternagel (DCS @ UIBK) WST 2018
Main Idea: Templates

- based on SAT/SMT encodings
Main Idea: Templates

- based on SAT/SMT encodings
- concrete instances seem entirely random
Main Idea: Templates

- based on SAT/SMT encodings
- concrete instances seem entirely random
- provide method-specific template mechanism to modify proof construction
Main Idea: Templates

• based on SAT/SMT encodings
• concrete instances seem entirely random
• provide method-specific template mechanism to modify proof construction

Main Idea: URL encoded examples

• setting up examples during lecture is error-prone and tedious
Main Idea: Templates

- Based on SAT/SMT encodings
- Concrete instances seem entirely random
- Provide method-specific template mechanism to modify proof construction

Main Idea: URL encoded examples

- Setting up examples during lecture is error-prone and tedious
- Encode examples into URL
Main Idea: Templates

- based on SAT/SMT encodings
- concrete instances seem entirely random
- provide method-specific template mechanism to modify proof construction

Main Idea: URL encoded examples

- setting up examples during lecture is error-prone and tedious
- encode examples into URL
- automatically restore examples
Main Idea: Templates

- based on SAT/SMT encodings
- concrete instances seem entirely random
- provide method-specific template mechanism to modify proof construction

Main Idea: URL encoded examples

- setting up examples during lecture is error-prone and tedious
- encode examples into URL
- automatically restore examples
- derive a convenient way to present examples
Template Mechanism for LPO, KBO, PIs and MIs
Addition on Natural Numbers

$0 + y \rightarrow y$

$s(x) + y \rightarrow s(x + y)$
Addition on Natural Numbers

\[
0 + y \rightarrow y \\
\text{s}(x) + y \rightarrow \text{s}(x + y)
\]

Termination Proof without restrictions by T_{TT_2}

LPO:

\[+ > \text{s} \sim 0\]
Addition on Natural Numbers

\[0 + y \rightarrow y\]
\[s(x) + y \rightarrow s(x + y)\]

Termination Proof without restrictions by T_{TT2}

LPO:
\[+ > s \sim 0\]

Also correct?

Is there a precedence with
\[0 > +, s > + \text{ or } 0 = +\]
How to call $T_T T_2$

./ttt2 [options] <file> [timeout]
How to call T_{TT2}

```
./ttt2 [options] <file> [timeout]
```

Call with specific Strategy

```
./ttt2 -s 'matrix' <file> [timeout]
```
How to call TTT2

```bash
./ttt2 [options] <file> [timeout]
```

Call with specific Strategy

```bash
./ttt2 -s 'matrix' <file> [timeout]
```

Call with a Template

```bash
./ttt2 -s 'poly [processor flags]' <file> [timeout]
```
How to call TTT_2

```
./ttt2 [options] <file> [timeout]
```

Call with specific Strategy

```
./ttt2 -s 'matrix' <file> [timeout]
```

Call with a Template

```
./ttt2 -s 'poly [processor flags]' <file> [timeout]
```

Example: Full Call

```
./ttt2 -s 'poly -inters "+ = x0 + x1"' add.trs
```
Encoding in T_{TT2}

TRS

Strategy
Encoding in T_{TT_2}
Encoding in $\mathbb{T}_T \mathbb{T}_2$

- TRS
- SAT/SMT Formula
- Strategy
- Solver Backend
Encoding in \mathcal{T}_{TT_2}
Encoding in \mathbb{T}_T
Encoding in T_{TT_2}

1. TRS → SAT/SMT Formula → Strategy
2. Template → Solver Backend
3. Solver Backend → SAT
4. SAT → UNSAT → Proof
Encoding in TT_2

TRS \rightarrow SAT/SMT Formula \rightarrow Strategy

Template Constraint \rightarrow Solver Backend \rightarrow SAT

UNSAT \rightarrow Proof
Encoding in \mathbb{T}_2
Lexicographic Path Order

- parameter is precedence
Lexicographic Path Order

- parameter is precedence
- \negprec gets prec template
Lexicographic Path Order

- parameter is precedence
- \(-\text{prec}\) gets prec template
- prec template specifies a (partial) precedence
Lexicographic Path Order

- parameter is precedence
- $\neg \text{prec}$ gets prec template
- prec template specifies a (partial) precedence

Syntax

```
prec

fun > fun
```

$fun > fun$

$= =$

$\geq \geq$

Diagram
Addition on Natural Numbers

\[0 + y \rightarrow y \]
\[s(x) + y \rightarrow s(x + y) \]

Termination Proof without restrictions by T_{TT2}

precedence: $+ > s \sim 0$

Also correct?

Is there a precedence with

\[0 > +, s > + \text{ or } 0 = + \]

\(^0\text{tick, cross and question mark are clickable hyperlinks}\)
Addition on Natural Numbers

\[0 + y \rightarrow y \]
\[s(x) + y \rightarrow s(x + y) \]

Termination Proof without restrictions by T_{TT_2}

precedence: $+ \succ s \sim 0$

Also correct?

\[0 > +, s > + \text{ or } 0 = + \]

0 tick, cross and question mark are clickable hyperlinks
Addition on Natural Numbers

\[0 + y \rightarrow y \]
\[s(x) + y \rightarrow s(x + y) \]

Termination Proof without restrictions by \(T_{TT2} \)

precedence: \(+ > s \sim 0 \)

Also correct?

\[0 > +, s > + \text{ or } 0 = + \]

\[./ttt2 \ -s \ 'lpo \ -prec"0 > +"' \ add.trs \]

\(^0 \)tick, cross and question mark are clickable hyperlinks
Addition on Natural Numbers

\[0 + y \rightarrow y \]
\[s(x) + y \rightarrow s(x + y) \]

Termination Proof without restrictions by \(T_{TT2} \)

precedence: \(+ > s \sim 0\)

Also correct?

\[0 > +, s > + \text{ or } 0 = + \]

\[./ttt2 -s 'lpo -prec"0 > +"' add.trs \]
\[./ttt2 -s 'lpo -prec"s > +"' add.trs \]

\(^0\text{tick, cross and question mark are clickable hyperlinks}\)
Addition on Natural Numbers

\[0 + y \rightarrow y \]
\[s(x) + y \rightarrow s(x + y) \]

Termination Proof without restrictions by $T_T T_2$

precedence: \(+ > s \sim 0\)

Also correct?

\[0 > +, s > + \text{ or } 0 = + \]

```
./ttt2 -s 'lpo -prec"0 > +"' add.trs ✔
./ttt2 -s 'lpo -prec"s > +"' add.trs ?
./ttt2 -s 'lpo -prec"0 = +"' add.trs ✔
```

\(^0\)tick, cross and question mark are clickable hyperlinks
Addition on Natural Numbers

\[0 + y \rightarrow y \]
\[s(x) + y \rightarrow s(x + y) \]

Termination Proof without restrictions by \mathbb{T}_2

precedence: $+ > s \sim 0$

Also correct?

\[0 > +, s > + \text{ or } 0 = + \]

```
./ttt2 -s 'lpo -prec"0 > +"' add.trs ✔
./ttt2 -s 'lpo -prec"s > +"' add.trs ?
./ttt2 -s 'lpo -prec"0 = +"' add.trs ✔
./ttt2 -s 'lpo -prec"+ > 0 > +"' add.trs ✗
```

\(^0\)tick, cross and question mark are clickable hyperlinks
Addition on Natural Numbers

\[0 + y \rightarrow y \]
\[s(x) + y \rightarrow s(x + y) \]

Termination Proof without restrictions by \(T_{\mathbb{T}2} \)

precedence: \(+ > s \sim 0 \)

Also correct?

\[0 > +, s > + \text{ or } 0 = + \]

\[
./ttt2 -s 'lpo -prec"0 > +"' add.trs \checkmark
./ttt2 -s 'lpo -prec"s > +"' add.trs \quad ?
./ttt2 -s 'lpo -prec"0 = +"' add.trs \checkmark
./ttt2 -s 'lpo -prec"+ > 0 > +"' add.trs \times
./ttt2 -s 'lpo -prec"0 = + > s"' add.trs \checkmark
\]

\(^0\)tick, cross and question mark are clickable hyperlinks
Knuth-Bendix Order

- parameters are precedence and weights
Knuth-Bendix Order

- parameters are precedence and weights
- `-weights` accepts a `weights template`
Knuth-Bendix Order

- parameters are precedence and weights
- `weights` accepts a weights template
- `w0` takes a value for \(w_0 \)
Knuth-Bendix Order

- parameters are precedence and weights
- \(\text{weights} \) accepts a weights template
- \(\text{\texttt{-w0}} \) takes a value for \(w_0 \)

Syntax

\[
\text{weights} = \text{fun} = \text{fun} \leq \text{weight} \geq\]

fun
Addition on Natural Numbers

\[0 + y \rightarrow y \]
\[s(x) + y \rightarrow s(x + y) \]

Examples

\[0 \leq w(x) \leq 16 \]
\[16 \leq w(x) \leq w(y) \]
\[w(x) = 7, w(y) = 3 \]
Addition on Natural Numbers

\[0 + y \rightarrow y \]
\[s(x) + y \rightarrow s(x + y) \]

Examples

\[8 \leq w(+) \leq 16 \]
Addition on Natural Numbers

\[0 + y \rightarrow y \]
\[s(x) + y \rightarrow s(x + y) \]

Examples

\[8 \leq w(+) \leq 16 \]

./ttt2 -s 'kbo -weights "+ <= 16, + >= 8"' add.trs
Addition on Natural Numbers

\[0 + y \rightarrow y \]
\[s(x) + y \rightarrow s(x + y) \]

Examples

\[8 \leq w(+) \leq 16 \]

```
./ttt2 -s 'kbo -weights "+ <= 16, + >= 8"' add.trs
```

\[16 \leq w(+) \text{ and } w(+) \leq 8 \]
Addition on Natural Numbers

\[0 + y \rightarrow y \]
\[s(x) + y \rightarrow s(x + y) \]

Examples

\[8 \leq w(+) \leq 16 \]
./ttt2 -s 'kbo -weights "{+ <= 16, + >= 8}"' add.trs

\[16 \leq w(+) \text{ and } w(+) \leq 8 \]
./ttt2 -s 'kbo -weights "{+ <= 8, + >= 16}"' add.trs
Addition on Natural Numbers

0 + y \rightarrow y
s(x) + y \rightarrow s(x + y)

Examples

8 \leq w(+) \leq 16
./ttt2 -s 'kbo -weights "+ \leq 16, + \geq 8"' add.trs

16 \leq w(+) \text{ and } w(+) \leq 8
./ttt2 -s 'kbo -weights "+ \leq 8, + \geq 16"' add.trs

0 = + > s, w(+) = 7, w(s) = 3 \text{ and } w_0 = 3
Addition on Natural Numbers

\[0 + y \rightarrow y \]
\[s(x) + y \rightarrow s(x + y) \]

Examples

\[8 \leq w(+) \leq 16 \]
\[
./ttt2 -s 'kbo -weights "+ <= 16, + >= 8"' add.trs
\]

\[16 \leq w(+) \text{ and } w(+) \leq 8 \]
\[
./ttt2 -s 'kbo -weights "+ <= 8, + >= 16"' add.trs
\]

\[0 = + > s, w(+) = 7, w(s) = 3 \text{ and } w_0 = 3 \]
\[
./ttt2 -s 'kbo -prec "0 = + > s" -weights "+ = s = 3" -w0 3' add.trs
\]
Linear Interpretations

- supported by PIs and MIs
Linear Interpretations

- supported by Pls and Mls
- accepted by the -inters flag
Linear Interpretations

- supported by PIs and MIs
- accepted by the \texttt{-inters} flag
- sums of linear monomials
Linear Interpretations

- supported by PIs and MIs
- accepted by the \texttt{-inters} flag
- sums of linear monomials
- \texttt{underscore} denotes arbitrary parts
Linear Interpretations

- supported by PIs and MIs
- accepted by the \texttt{-inters} flag
- sums of linear monomials
- underscore denotes arbitrary parts
- integer at the end of \texttt{var} denotes the position of the argument
Linear Interpretations

- supported by PIs and MIs
- accepted by the \(-\text{inters}\) flag
- sums of linear monomials
- underscore denotes arbitrary parts
- integer at the end of \(\text{var}\) denotes the position of the argument

Syntax

\[
\text{inters} = \text{fun} = \text{var} = \text{const} \pm \text{const}
\]
Polynomial Interpretations

take natural numbers for “const” in the inters template
Polynomial Interpretations

Addition on Natural Numbers

- $0 + y \rightarrow y$
- $s(x) + y \rightarrow s(x + y)$

Examples

- $[+](x, y) = 2x + y + 1$, $[s](x) = x + 1$, $[0] = 0$
Polynomial Interpretations

take natural numbers for “const” in the inters template

Addition on Natural Numbers

\[
\begin{align*}
0 + y & \rightarrow y \\
s(x) + y & \rightarrow s(x + y)
\end{align*}
\]

Examples

\[
[+](x, y) = 2x + y + 1, [s](x) = x + 1, [0] = 0
\]

./ttt2 -s 'poly -inters"+ = 2x0 + x1 + 1, s = x0 + 1, 0 = 0'' add.trs
Examples cont’d

\[
[+](x, y) = 2x + ay + 1, [s](x) = bx + c, [0] = 0,
\]

where \(a, b \) and \(c \) are arbitrary
Examples cont’d

\[
(+)(x, y) = 2x + ay + 1, \quad [s](x) = bx + c, \quad [0] = 0,
\]

where \(a\), \(b\) and \(c\) are arbitrary

```
./ttt2 -s 'poly -inters "+ = 2x0 + _ + 1, s = _, 0 = 0' 
```

add.trs
Examples cont’d

\[(+)(x, y) = 2x + ay + 1, [s](x) = bx + c, [0] = 0, \]

where \(a, b \) and \(c \) are arbitrary.

```bash
./ttt2 -s 'poly -inters "+ = 2x0 + _ + 1, s = _, 0 = 0"'
```

add.trs
Examples cont’d

\[++(x, y) = 2x + ay + 1, \quad [s](x) = bx + c, \quad [0] = 0, \]
where \(a, b\) and \(c\) are arbitrary.

```
./ttt2 -s 'poly -inters "+ = 2x0 + _ + 1, s = _, 0 = 0"'
add.trs
```

\[++(x, y) = 2x + y \]
Examples cont’d

\([+] (x, y) = 2x + ay + 1, [s](x) = bx + c, [0] = 0,\]

where \(a, b\) and \(c\) are arbitrary

```
./ttt2 -s 'poly -inters "+ = 2x0 + _ + 1, s = _, 0 = 0"'
add.trs
```

\([+] (x, y) = 2x + y\)

```
./ttt2 -s 'poly -inters "+ = 2x0 + x1"' add.trs
```

✓
Examples cont’d

\[[+] (x, y) = 2x + ay + 1, [s](x) = bx + c, [0] = 0, \]
where \(a, b \) and \(c \) are arbitrary

./ttt2 -s 'poly -inters "+ = 2x0 + _ + 1, s = _, 0 = 0"' ✓
add.trs

\[[+] (x, y) = 2x + y \]

./ttt2 -s 'poly -inters "+ = 2x0 + x1"' ✓
add.trs

\[[+] (x, y) = 2x + ay, \text{where } a \text{ is arbitrary} \]
Examples cont’d

\[(+)(x, y) = 2x + ay + 1, \ [s](x) = bx + c, \ [0] = 0, \]

where \(a, b \) and \(c \) are arbitrary

```
./ttt2 -s 'poly -inters "+ = 2x0 + _ + 1, s = _, 0 = 0"'
```

add.trs

\[(+)(x, y) = 2x + y \]

```
./ttt2 -s 'poly -inters "+ = 2x0 + x1"'
```

add.trs

\[(+)(x, y) = 2x + ay, \text{where } a \text{ is arbitrary} \]

```
./ttt2 -s 'poly -inters "+ = 2x0 + _ + 0"
```

add.trs
Matrix Interpretations

- matrices of natural numbers as “const”
Matrix Interpretations

- matrices of natural numbers as “const”
- 0 and 1 for zero-vector and one-vector
Matrix Interpretations

- matrices of natural numbers as “const”
- 0 and 1 for zero-vector and one-vector

Syntax

```
matrix
```

```
[ nat , ; ]
```

J. Schöpf, C. Sternagel (DCS @ UIBK) WST 2018
Example: Syntax

\[
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{pmatrix}
\]

in template syntax for MIs: [1,2,3;4,5,6]
Example: Syntax

\[
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{pmatrix}
\]

in template syntax for MIs: [1,2,3;4,5,6]

Examples

\[
[0] = \begin{pmatrix}
0 \\
0
\end{pmatrix} \quad [s](x) = x + \begin{pmatrix}
1 \\
1
\end{pmatrix}
\]

\[
[+] (x, y) = \begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix} x + \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix} y + \begin{pmatrix}
1 \\
0
\end{pmatrix}
\]
Example: Syntax

\[
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{pmatrix}
\]

in template syntax for MIs: [1,2,3;4,5,6]

Examples

\[
\begin{pmatrix}
0 \\
0
\end{pmatrix} = (0,0) \quad [s](x) = x + \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

\[
[+](x,y) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} x + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} y + \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]

./ttt2 -s 'matrix -inters "+ = [1,1;0,1]x0 + [1,0;0,1]x1 ✓
+ [1;0], s = x0 + 1, 0 = 0"' add.trs
Examples cont’d

\[
[0] = \begin{pmatrix} a \\ 0 \end{pmatrix} \quad [s](x) = x + m_1
\]

\[
[+](x, y) = \begin{pmatrix} 1 & b \\ c & d \end{pmatrix} x + m_2 y + \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]

where \(a, b, c, d, m_1 \) and \(m_2 \) are arbitrary
Examples cont’d

\[
[0] = \begin{pmatrix} a \\ 0 \end{pmatrix} \quad [s](x) = x + m_1 \\
[+])(x, y) = \begin{pmatrix} 1 & b \\ c & d \end{pmatrix} x + m_2 y + \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]

where \(a, b, c, d, m_1 \) and \(m_2 \) are arbitrary.

```
./ttt2 -s 'matrix -inters "+ = [1,_,_,_]x0 + _ + [1;0], ✓
s = x0 + _ , 0 = [_;0]' add.trs
```
Arbitrary Boolean Structure

- arbitrary boolean combinations of atomic constraints
Arbitrary Boolean Structure

- arbitrary boolean combinations of atomic constraints
- special case: comma-separated list of atoms
Arbitrary Boolean Structure

- arbitrary boolean combinations of atomic constraints
- special case: comma-separated list of atoms

Syntax

```
combination

atom

NOT ( combination )

AND ( combination )

OR ( combination )
```

J. Schöpf, C. Sternagel (DCS @ UIBK) WST 2018
Examples

f should not be bigger than h and g at the same time:
Examples

f should not be bigger than h and g at the same time:

./ttt2 -s 'lpo -prec "NOT(AND(f > g, f > h))"' 2.60.xml ✓
Examples

f should not be bigger than h and g at the same time:
./ttt2 -s ‘lpo -prec "NOT(AND(f > g, f > h))"’ 2.60.xml ✓

canstant part of + should be two and when 0 is zero then s should be the successor function:
Examples

f should not be bigger than h and g at the same time:
./ttt2 -s 'lpo -prec "NOT(AND(f > g, f > h))"' 2.60.xml

constant part of + should be two and when 0 is zero then s should be the successor function:
./ttt2 -s 'poly -inters "AND(+ = _ + 2, OR(NOT(0 = 0), s = x0 + 1))"' 4.11.xml
Examples

f should not be bigger than h and g at the same time:
./ttt2 -s 'lpo -prec "NOT(AND(f > g, f > h))"' 2.60.xml ✓

constant part of + should be two and when 0 is zero then s should be the successor function:
./ttt2 -s 'poly -inters "AND(+ = _ + 2, OR(NOT(0 = 0), ✓
s = x0 + 1))"' 4.11.xml

upper triangular matrices with only ones in the diagonals for unary f and binary g and h:
Examples

f should not be bigger than h and g at the same time:

```
./ttt2 -s 'lpo -prec "NOT(AND(f > g, f > h))"' 2.60.xml ✓
```

constant part of + should be two and when 0 is zero then s should be the successor function:

```
./ttt2 -s 'poly -inters "AND(+ = _ + 2, OR(NOT(0 = 0), s = x0 + 1))"' 4.11.xml ✓
```

upper triangular matrices with only ones in the diagonals for unary f and binary g and h:

```
./ttt2 -s 'poly -inters "f=g=h=[1,_,_;0,1,_;0,0,1]x0+_, g=h=[1,_,_;0,1,_;0,0,1]x1+_'"' 27.xml ✓
```
Extension of the Web interface
Web Interface

Tyrolean Termination Tool 2 (1.17)

1. Input Term Rewrite System

For input use the standard TRS format.

```
(VAR x y)
(RULES
  add(0,y) -> y
  add(s(x),y) -> s(add(x,y))
  mul(0,y) -> 0
  mul(s(x),y) -> add(y,mul(x,y))
)
```

2. Select Strategy

- FAST
- FBI
- HYDRA
- LPO
- KBO
- POLY
- MATRIX(2)
- MATRIX(3)
- COMP
- COMPLEXITY
- EXPERT

3. Encode State into URL (optional)

encode URL clear URL

4. Start TTT2

check □ use HTML output if available (experimental feature)
Tyrolean Termination Tool 2 (1.17)

1. Input Term Rewrite System

For input use the standard TRS format.

```
(VAR x y)
(RULES
  add(0,y) -> y
  add(s(x),y) -> s(add(x,y))
  mul(0,y) -> 0
  mul(s(x),y) -> add(y,mul(x,y))
)
```

2. Select Strategy

- FAST
- FBI
- HYDRA
- LPO
- KBO
- POLY
- MATRIX(2)
- MATRIX(3)
- COMP
- COMPLEXITY

KBO:

PRECEDENCE

WEIGHTS

W0

3. Encode State into URL (optional)

encode URL clear URL

4. Start TTT2

check use HTML output if available (experimental feature)
URL encoding in the Web interface

- idea: encode content of web interface into URL
URL encoding in the Web interface

- idea: encode content of web interface into URL
- we encode the TRS, the strategy and the templates
URL encoding in the Web interface

- **idea**: encode content of web interface into URL
- we encode the **TRS**, the **strategy** and the **templates**
- encoded into the **query string** of the URL
URL encoding in the Web interface

- idea: encode content of web interface into URL
- we encode the TRS, the strategy and the templates
- encoded into the query string of the URL

Normal URL

http://colo6-c703.uibk.ac.at/ttt2/web/
URL encoding in the Web interface

- idea: **encode** content of web interface into URL
- we encode the **TRS**, the **strategy** and the **templates**
- encoded into the **query string** of the URL

Normal URL

http://colo6-c703.uibk.ac.at/ttt2/web/

URL with encoded Query String

http://colo6-c703.uibk.ac.at/ttt2/web/?problem=(VAR%20x%20y)%0A(RULES%0A%20add(0%2Cy)%20-%3E%20y%0A%20add(s(x)%2Cy)%20-%3E%20s(add(x%2Cy))%0A)&strategy=kbo&template=add%20%3E%20s&template1=add%20%3D%20s%20%3D%208&template2=3
Conclusion

- **template mechanism** to check specific proofs
Conclusion

• template mechanism to check specific proofs
• available for LPO, KBO, PIs and MIs
Conclusion

- **template mechanism** to check specific proofs
- available for **LPO, KBO, PIs and MIs**
- **web interface extension** to save the configurations for an example
Conclusion

• template mechanism to check specific proofs
• available for LPO, KBO, PIs and MIs
• web interface extension to save the configurations for an example
• to have near absolute certainty you should use CeTA to validate the output of TTT2
Conclusion

- template mechanism to check specific proofs
- available for LPO, KBO, PIs and MIs
- web interface extension to save the configurations for an example
- to have near absolute certainty you should use CeTA to validate the output of T_1T_2.

Future Work

- templates for other methods like arctic interpretations, the (generalized) subterm criterion, ...
Conclusion

• template mechanism to check specific proofs
• available for LPO, KBO, PIs and MIs
• web interface extension to save the configurations for an example
• to have near absolute certainty you should use CeTA to validate the output of \(T_T T_2 \)

Future Work

• templates for other methods like arctic interpretations, the (generalized) subterm criterion, …
• which extensions to our templates are most useful for teaching?
Thank you for your attention!