Inference of Linear Upper-Bounds on the Expected Cost by Solving Cost Relations

Alicia Merayo and Samir Genaim

Complutense University of Madrid

Oxford, 07/19/2018
Overview

Introduction

Probabilistic programs

Cost Analysis of Probabilistic Programs

Conclusions
Cost Analysis

Application of static techniques in order to determine the amount of resources that are needed to execute a program.

- Runtime (execution steps)
- Memory consumption
- Generic cost model: ticks
Cost Analysis

Application of static techniques in order to determine the amount of resources that are needed to execute a program.

- Runtime (execution steps)
- Memory consumption
- Generic cost model: ticks
Cost Analysis

- **Runtime:** Sort

```c
for (i = 0; i < length(a); i++){
    val = a[i];
    j = i-1;
    while (j > 0 && a[j] > val){
        a[j+1] = a[j];
        j = j-1;
        tick(1);
    }
    a[j+1] = val;
    tick(1);
}
```

- **Worst case cost:**

\[
\frac{\text{length}(a)^2 + \text{length}(a)}{2}
\]

- **Memory:** Dynamic Array

```c
while(! empty(list)){
    if list[i] > 0{
        if (j>=n){
            enlarge(a,l,n);
            tick(2*l*n);
        }
        a[j] = head(list);
        list = tail(list);
        j = j+1;
    }
    i = i+1;
}
```

- **Worst case cost:**

\[
2 * l * n * (\text{length(list)})
\]
Cost Analysis

- **Runtime:** Sort

```c
for (i = 0; i < length(a); i++){
    val = a[i];
    j = i - 1;
    while (j > 0 && a[j] > val){
        a[j+1] = a[j];
        j = j - 1;
        tick(1);
    }
    a[j+1] = val;
    tick(1);
}
```

- **Worst case cost:**

\[
\frac{\text{length}(a)^2 + \text{length}(a)}{2}
\]

- **Memory:** Dynamic Array

```c
while(! empty(list)){
    if list[i] > 0{
        if (j>=n){
            enlarge(a, l, n);
            tick(2*l*n);
        }
        a[j] = head(list);
        list = tail(list);
        j = j+1;
    }
    i = i+1;
}
```

- **Worst case cost:**

\[
2 * l * n * (\text{length(list)})
\]
Cost Analysis

- **Runtime:** Sort

```c
for (i = 0; i < length(a); i++){
    val = a[i];
    j = i - 1;
    while (j > 0 && a[j] > val){
        a[j+1] = a[j];
        j = j - 1;
        tick(1);
    }
    a[j+1] = val;
    tick(1);
}
```

- **Worst case cost:**

\[
\frac{\text{length}(a)^2 + \text{length}(a)}{2}
\]

- **Memory:** Dynamic Array

```c
while (! empty(list)){
    if list[i] > 0{
        if (j>=n){
            enlarge(a, l, n);
            tick(2*l*n);
        }
        a[j] = head(list);
        list = tail(list);
        j = j + 1;
    }
    i = i + 1;
}
```

- **Worst case cost:**

\[
2 \times l \times n \times (\text{length(list)})
\]
Cost Analysis

- **Runtime:** Sort

  ```java
  for (i = 0; i < length(a); i++){
      val = a[i];
      j = i - 1;
      while (j > 0 && a[j] > val){
          a[j+1] = a[j];
          j = j - 1;
          tick(1);
      }
      a[j+1] = val;
      tick(1);
  }
  ```

 Worst case cost:

 \[
 \frac{\text{length}(a)^2 + \text{length}(a)}{2}
 \]

- **Memory:** Dynamic Array

  ```java
  while(! empty(list)){
      if list[i] > 0{
          if (j >= n){
              enlarge(a, l, n);
              tick(2*l*n);
          }
          a[j] = head(list);
          list = tail(list);
          j = j+1;
      }
      i = i+1;
  }
  ```

 Worst case cost:

 \[
 2 * l * n * (\text{length(list)})
 \]
SACO

Static analyzer for automatically inferring upper/lower bounds on the worst/best-case resource consumption of ABS programs.

http://costa.fdi.ucm.es/saco/web/

ABS

- Functional + imperative.
- Based on concurrent objects.
SACO

Static analyzer for automatically inferring upper/lower bounds on the worst/best-case resource consumption of ABS programs.
http://costa.fdi.ucm.es/saco/web/

ABS

- Functional + imperative.
- Based on concurrent objects.
while (x>=0) {
 x = x-1;
 tick(1);
}

x ≥ 0
x' = x - 1

while (x≥0){
 x = x-1;
 tick(1);
}
while ($x \geq 0$) {
 $x = x - 1$;
 tick(1);
}

$x < 0$

$x \geq 0$

$x' = x - 1$

1
while (x >= 0) {
 x = x - 1;
 tick (1);
}

\[x < 0 \]
\[x \geq 0 \]
\[x' = x - 1 \]
Cost Analysis using SACO

```plaintext
while (x >= 0)
{
    x = x - 1;
    tick (1);
}
```

1

- $x < 0$
- $x \geq 0$
- $x' = x - 1$
Cost Analysis using SACO

while (x >= 0) {
 x = x - 1;
 tick(1);
}

\[x < 0 \]
\[x \geq 0 \]
\[x' = x - 1 \]
Cost Analysis using SACO

From CFG to Cost Relations

\[C(x) = \begin{cases} 0 & \{ x < 0 \} \\ D(x') & \{ x \geq 0, x' = x - 1 \} \end{cases} \]

\[D(x) = 1 + C(x') \quad \{ x' = x \} \]

Simplifying cost relations

\[C(x) = \begin{cases} 0 & \{ x < 0 \} \\ 1 + C(x') & \{ x \geq 0, x' = x - 1 \} \end{cases} \]
Cost Analysis using SACO

From CFG to Cost Relations

\[C(x) = 0 \quad \{ x < 0 \} \]
\[C(x) = D(x') \quad \{ x \geq 0, x' = x - 1 \} \]
\[D(x) = 1 + C(x') \quad \{ x' = x \} \]

Simplifying cost relations

\[C(x) = 0 \quad \{ x < 0 \} \]
\[C(x) = 1 + C(x') \quad \{ x \geq 0, x' = x - 1 \} \]
Cost Analysis using SACO

From CFG to Cost Relations

\[
\begin{align*}
C(x) &= 0 & \{x < 0\} \\
C(x) &= D(x') & \{x \geq 0, x' = x - 1\} \\
D(x) &= 1 + C(x') & \{x' = x\}
\end{align*}
\]

Simplifying cost relations

\[
\begin{align*}
C(x) &= 0 & \{x < 0\} \\
C(x) &= 1 + C(x') & \{x \geq 0, x' = x - 1\}
\end{align*}
\]
Cost Analysis using SACO

Cost relations are like recurrence relations, but they have some differences like nondeterminism.

\[\text{while} (x \geq 0) \{
\begin{align*}
 x &= x - 1; \\
 \text{tick}(1);
\end{align*}
\} \]

\[
\begin{align*}
C(x) &= 0 & \{x < 0\} \\
C(x) &= 1 + C(x') & \{x \geq 0, \ x' = x - 1\}
\end{align*}
\]
Cost Analysis using SACO

Cost relations are like recurrence relations, but they have some differences like nondeterminism.

\[
\text{while } (x \geq 0) \{
 x = x - 1;
 \text{tick(1)};
\}
\]

\[
C(x) = 0 \quad \{x < 0\}
\]
\[
C(x) = 1 + C(x') \quad \{x \geq 0, \ x' = x - 1\}
\]
Cost Analysis using SACO

Upper Bound of a Cost Relation

Upper-bound on the set of values to which a query might evaluate. It is an upper bound of the worst case of the execution.

```
while (x >= 0) {
    if (*)
        x = x - 1;
    else
        x = x - 2;
    tick (1);
}
```

\[
\begin{align*}
C(x) &= 0 & \{x < 0\} \\
C(x) &= 1 + C(x') & \{x \geq 0, \ x' = x - 1\} \\
C(x) &= 1 + C(x') & \{x \geq 0, \ x' = x - 2\}
\end{align*}
\]

\[C(10) = 10, 9, 8, \ldots\]
Cost Analysis using SACO

Upper Bound of a Cost Relation

Upper-bound on the set of values to which a query might evaluate. It is an upper bound of the worst case of the execution.

```plaintext
while (x >= 0){
  if (*)
    x = x - 1;
  else
    x = x - 2;
  tick(1);
}
```

\[
C(x) = \begin{cases}
0 & \{x < 0\} \\
1 + C(x') & \{x \geq 0, \ x' = x - 1\} \\
1 + C(x') & \{x \geq 0, \ x' = x - 2\}
\end{cases}
\]

\[C(10) = 10, 9, 8, \ldots\]
Upper Bound of a Cost Relation

Upper-bound on the set of values to which a query might evaluate. It is an upper bound of the worst case of the execution.

```
while (x >= 0) {
  if (*)
    x = x - 1;
  else
    x = x - 2;
  tick(1);
}
```

\[
\begin{align*}
 C(x) &= 0 \quad \{x < 0\} \\
 C(x) &= 1 + C(x') \quad \{x \geq 0, \; x' = x - 1\} \\
 C(x) &= 1 + C(x') \quad \{x \geq 0, \; x' = x - 2\}
\end{align*}
\]

\[C(10) = 10, 9, 8, \ldots\]
When worst-case is not enough...

```java
while (msgs != null) {
    if (send(head(data))) {
        msgs = tail(msgs);
    }
    tick(1);
}
```

\[
C(n) = 0 \quad \text{\{} n \leq 0 \text{\}}
\]

\[
C(n) = 1 + C(n') \quad \text{\{} n \geq 1, n' = n - 1 \text{\}}
\]

\[
C(n) = 1 + C(n') \quad \text{\{} n \geq 1, n' = n \text{\}}
\]

- Infinite complexity
- What happens if we trust the quality of the network to some degree?
When worst-case is not enough...

while (msgs != null) {
 if (send(head(data))) {
 msgs = tail(msgs);
 }
 tick(1);
}

C(n) = 0 \quad \{n \leq 0\}
C(n) = 1 + C(n') \quad \{n \geq 1, n' = n - 1\}
C(n) = 1 + C(n') \quad \{n \geq 1, n' = n\}

- Infinite complexity
- What happens if we trust the quality of the network to some degree?
When worst-case is not enough...

```plaintext
while (msgs != null) {
    if (send(head(data))) {
        msgs = tail(msgs);
    }
    tick(1);
}
```

\[
C(n) = \begin{cases}
0 & \{n \leq 0\} \\
1 + C(n') & \{n \geq 1, n' = n - 1\} \\
1 + C(n') & \{n \geq 1, n' = n\}
\end{cases}
\]

- Infinite complexity
- What happens if we trust the quality of the network to some degree?
When worst-case is not enough...

```c
while (msgs != null) {
    if (send(head(data))) {
        msgs = tail(msgs);
    }
    tick(1);
}
```

\[
\begin{align*}
C(n) &= 0 & \{ n \leq 0 \} \\
C(n) &= 1 + C(n') & \{ n \geq 1, n' = n - 1 \} \\
C(n) &= 1 + C(n') & \{ n \geq 1, n' = n \}
\end{align*}
\]

- Infinite complexity
- What happens if we trust the quality of the network to some degree?
Probabilistic programs

Addition of probabilistic choices to the set of instructions:

\[\text{inst}_1 \oplus_p \text{inst}_2 \]

where

- \(p \in [0, 1] \)
- \(\text{inst}_1 \) and \(\text{inst}_2 \) will execute with probability \(p \) and \(1 - p \), respectively.
- It can be generalized such that \(\text{inst}_i \) is executed with probability \(p_i \), and \(\sum_i p_i = 1 \)

```
while(x < y){
    x = x - 1 \oplus \frac{1}{3}
    y = y - 2;
    tick(1);
}
```
Probabilistic programs

Addition of probabilistic choices to the set of instructions:

\[\text{inst}_1 \oplus_p \text{inst}_2 \]

where

- \(p \in [0, 1] \)
- \(\text{inst}_1 \) and \(\text{inst}_2 \) will execute with probability \(p \) and \(1 - p \), respectively.
- It can be generalized such that \(\text{inst}_i \) is executed with probability \(p_i \), and \(\sum_i p_i = 1 \)

```c
while(x < y){
    x = x - 1 \oplus \frac{1}{3} y = y - 2;
    tick(1);
}
```
Addition of probabilistic choices to the set of instructions:

\[\text{inst}_1 \oplus_p \text{inst}_2 \]

where

- \(p \in [0, 1] \)
- \(\text{inst}_1 \) and \(\text{inst}_2 \) will execute with probability \(p \) and \(1 - p \), respectively.
- It can be generalized such that \(\text{inst}_i \) is executed with probability \(p_i \), and \(\sum_i p_i = 1 \)

```plaintext
while (x < y) {
    x = x - 1 \oplus 1/3
    y = y - 2;
    tick(1);
}
```
Addition of probabilistic choices to the set of instructions:

\[\text{inst}_1 \oplus_p \text{inst}_2 \]

where

- \(p \in [0, 1] \)
- \(\text{inst}_1 \) and \(\text{inst}_2 \) will execute with probability \(p \) and \(1 - p \), respectively.
- It can be generalized such that \(\text{inst}_i \) is executed with probability \(p_i \), and \(\sum_i p_i = 1 \)

```plaintext
while(x < y) {
    x = x - 1 \oplus \frac{1}{3} \quad y = y - 2;
    tick(1);
}
```
Expected cost

Packages transmission on a net

We have got a net for transmitting packages on which the probability of succeeding is \(\frac{2}{3} \), and we want to transmit \(n \) packages.

while(msgs ! = null){
 if(send(head(data)))
 msgs = tail(msgs);
 tick(1);
}

while (n > 0){
 n = n − 1; \oplus \frac{2}{3} \text{skip;}
 tick(1);
}
Packages transmission on a net

We have got a net for transmitting packages on which the probability of succeeding is $\frac{2}{3}$, and we want to transmit n packages.

```java
while(msgs != null){
    if(send(head(data))){
        msgs = tail(msgs);
        tick(1);
    }
}

\rightarrow

while (n > 0){
    n = n - 1; \oplus \frac{2}{3} \text{skip;}
    tick(1);
}
```
Packages transmission on a net

We have got a net for transmitting packages on which the probability of succeeding is \(\frac{2}{3} \), and we want to transmit \(n \) packages.

\[
\begin{align*}
\text{while}(\text{msgs} \neq \text{null})\{ \\
\quad \text{if}(\text{send}(\text{head}(\text{data}))) \\
\quad \text{msgs} = \text{tail}(\text{msgs}); \\
\quad \text{tick}(1);
\}
\end{align*}
\]

\[
\begin{align*}
\text{while} \ (n > 0) \{ \\
\quad n = n - 1; \oplus \frac{2}{3} \text{skip}; \\
\quad \text{tick}(1);
\}
\end{align*}
\]
Expected cost

Let

- S be an infinite sequence of independent choices for the probabilistic operation.
- $\text{cost}(n, S)$ be the cost of the execution (with input n) when taking the choices indicated in S.
- $\Pr(S)$ be the probability of taking such choices

then the expected cost is defined as

$$\sum_S \Pr(S) \cdot \text{cost}(n, S)$$
Expected cost

Let

- S be an infinite sequence of independent choices for the probabilistic operation.
- $\text{cost}(n, S)$ be the cost of the execution (with input n) when taking the choices indicated in S.
- $\text{Pr}(S)$ be the probability of taking such choices.

Then the expected cost is defined as

$$\sum_{S} \text{Pr}(S) \cdot \text{cost}(n, S)$$
Expected cost

Let

- S be an infinite sequence of independent choices for the probabilistic operation.
- $\text{cost}(n, S)$ be the cost of the execution (with input n) when taking the choices indicated in S.
- $\Pr(S)$ be the probability of taking such choices

then the expected cost is defined as

$$\sum_S \Pr(S) \cdot \text{cost}(n, S)$$
Let

- S be an infinite sequence of independent choices for the probabilistic operation.
- $\text{cost}(n, S)$ be the cost of the execution (with input n) when taking the choices indicated in S.
- $\Pr(S)$ be the probability of taking such choices

then the expected cost is defined as

$$\sum_S \Pr(S) \cdot \text{cost}(n, S)$$
Expected cost

Let

- S be an infinite sequence of independent choices for the probabilistic operation.
- $\text{cost}(n, S)$ be the cost of the execution (with input n) when taking the choices indicated in S.
- $\Pr(S)$ be the probability of taking such choices

then the *expected cost* is defined as

$$\sum_S \Pr(S) \cdot \text{cost}(n, S)$$
Expected cost

\[\sum_S \Pr(S) \cdot \text{cost}(n, S) \]

- The sum is over all possible sequences \(S \).
- \(\sum_S \Pr(S) = 1 \)

while \((n > 0)\) {
 \[n = n - 1; \oplus \frac{2}{3} \text{ skip; } \]
 tick(1);
}
Expected cost

\[\sum_S \Pr(S) \cdot \text{cost}(n, S) \]

- The sum is over all possible sequences \(S \).
- \(\sum_S \Pr(S) = 1 \)

while \((n > 0)\) {
 \(n = n - 1\);
 \(\oplus_{\frac{2}{3}}\) skip;
 tick(1);
}
Expected cost

\[\sum_S \Pr(S) \cdot \text{cost}(n, S) \]

- The sum is over all possible sequences \(S \).
- \(\sum_S \Pr(S) = 1 \)

```plaintext
while (n > 0) {
    n = n - 1; \oplus_2 \text{skip};
    \text{tick}(1);
}
```
Expected cost

\[\sum_S \Pr(S) \cdot \text{cost}(n, S) \]

- The sum is over all possible sequences \(S \).
- \(\sum_S \Pr(S) = 1 \)

while \(n > 0 \) {
 \[n = n - 1; \oplus_2 \frac{2}{3} \text{skip}; \]
 \[\text{tick}(1); \]
}
Expected cost by CRs

while \(n > 0 \)\{
 n = n - 1; \oplus_{2/3} \text{skip};
 \text{tick}(1);
\}

By definition, the expected cost is

\[
\sum_{S} \Pr(S) \cdot \text{cost}(n, S)
\]

CRs:

\[
C(n) = 0 \quad \{ n \leq 0 \}
\]

\[
C(n) = 1 + \frac{2}{3} C(n') + \frac{1}{3} C(n'') \quad \{ n \geq 1, n' = n - 1, n'' = n \}
\]

Expected cost: \(\frac{3}{2} n \)
Expected cost by CRs

While \((n > 0)\) {
 \[n = n - 1; \oplus \frac{2}{3} \text{skip}; \]
 \[\text{tick}(1); \]
}

By definition, the expected cost is

\[
\sum_{S} \Pr(S) \cdot \text{cost}(n, S)
\]

CRs:

\[
C(n) = \begin{cases}
0 & \{n \leq 0\} \\
1 + \frac{2}{3} C(n') + \frac{1}{3} C(n'') & \{n \geq 1, n' = n - 1, n'' = n\}
\end{cases}
\]

Expected cost: \(\frac{3}{2} n\)
Expected cost by CRs

while \(n > 0 \)\{
\[
\begin{align*}
 n &= n - 1; \oplus \frac{2}{3} \text{skip}; \\
 \text{tick}(1);
\end{align*}
\}

By definition, the expected cost is
\[
\sum_{S} \Pr(S) \cdot \text{cost}(n, S)
\]

CRs:
\[
\begin{align*}
 C(n) &= 0 & \{ n \leq 0 \} \\
 C(n) &= 1 + \frac{2}{3} C(n') + \frac{1}{3} C(n'') & \{ n \geq 1, n' = n - 1, n'' = n \}
\]

Expected cost: \(\frac{3}{2} n \)
Expected cost by CRs

while \(n > 0 \)\{
 n = n - 1; \oplus \frac{2}{3} \text{ skip};
 \text{tick}(1);
\}

By definition, the expected cost is
\[
\sum_S \Pr(S) \cdot \text{cost}(n, S)
\]

CRs:

\[
C(n) = 0 \quad \{n \leq 0\}
\]

\[
C(n) = 1 + \frac{2}{3} C(n') + \frac{1}{3} C(n'') \quad \{n \geq 1, n' = n - 1, n'' = n\}
\]

Expected cost: \(\frac{3}{2} n \)
Our goal

We want to introduce probabilities into SACO.

Steps

- Introduction of probabilities into CFGs.
- Development of techniques for inferring expected cost of CFGs via CRs.
- Specify probabilities directly in ABS.
Our goal

We want to introduce probabilities into SACO.

Steps

- Introduction of probabilities into CFGs.
- Development of techniques for inferring expected cost of CFGs via CRs.
- Specify probabilities directly in ABS.
Our goal

We want to introduce probabilities into SACO.

Steps

- Introduction of probabilities into CFGs.
- Development of techniques for inferring expected cost of CFGs via CRs.
- Specify probabilities directly in ABS.
Our goal

We want to introduce probabilities into SACO.

Steps

- Introduction of probabilities into CFGs.
- Development of techniques for inferring expected cost of CFGs via CRs.
- Specify probabilities directly in ABS.
CFGs with probabilities

CFG without probabilities:

CFG with probabilities:
CFGs with probabilities

CFG without probabilities:

CFG with probabilities:
CFGs with probabilities

CFG with probabilities:

- Regular instructions represented by circles.
- Probability instructions represented by squares.
- Edges with updates and probabilities.
- Constraints.
- Nodes with cost.
- $\sum_i p_i = 1$
- Choices in normal nodes cover the whole state space.
CFGs with probabilities

CFG with probabilities:

- Regular instructions represented by circles.
- Probability instructions represented by squares.
- Edges with updates and probabilities.
- Constraints.
- Nodes with cost.
- $\sum_i p_i = 1$
- Choices in normal nodes cover the whole state space.
CFGs with probabilities

CFG with probabilities:

- Regular instructions represented by circles.
- Probability instructions represented by squares.
- Edges with updates and
 - Probabilities
 - Constraints
- Nodes with cost.
 - $\sum_i p_i = 1$
 - Choices in normal nodes cover the whole state space.
CFG with probabilities:

- Regular instructions represented by circles.
- Probability instructions represented by squares.
- Edges with updates and
 - Probabilities
 - Constraints
- Nodes with cost.
- $\sum_i p_i = 1$
- Choices in normal nodes cover the whole state space.
CFGs with probabilities

Regular instructions represented by circles.

Probability instructions represented by squares.

Edges with updates and
- Probabilities
- Constraints

Nodes with cost.

\[\sum_i p_i = 1 \]

Choices in normal nodes cover the whole state space.
while \((n > 0)\)\
\[
n = n - 1; \oplus \frac{2}{3} \text{ skip};
\]
\[
tick(1);
\]
CFGs with probabilities

while \((n > 0)\)
\[
\begin{align*}
n &= n - 1; \oplus \frac{2}{3} \text{ skip}; \\
tick(1);
\end{align*}
\]
while \((n > 0)\) {
 \[n = n - 1; \oplus \frac{2}{3} \text{ skip;}
 \]
 \text{tick(1);}
}
while $(n > 0)$

\[
\begin{align*}
 n &= n - 1; \oplus \frac{2}{3} \text{ skip}; \\
 \text{tick}(1);
\end{align*}
\]
while \((n > 0)\) {
 \(n = n - 1; \oplus \frac{2}{3} \text{ skip;}
 \)
 \(\text{ tick}(1);\)
}\
while \((n > 0)\) {
 \[n = n - 1; \oplus_{\frac{2}{3}} \text{skip}; \]
 \[\text{tick}(1); \]
}
while \((n > 0)\)\{
 n = n - 1; \; \oplus \frac{2}{3} \; \text{skip};
 \text{tick}(1);
\}
while \((n > 0) \) {
 \[n = n - 1 \; ; \; \oplus \frac{2}{3} \; \text{skip} ; \]
 \(\text{tick}(1) ; \)
}\)

\[p = \frac{2}{3} \]
\[n' = n - 1 \]
\[p = \frac{1}{3} \]
Generating CRs

- Each regular node \(n \in N_r \) with outgoing transitions \(n \xrightarrow{\varphi_i} n_i \), \(1 \leq i \leq k \), contributes \(k \) cost relations of the form

\[
C_n(\bar{x}) = \text{cost}(n) + C_{n_i}(\bar{x}')
\]

- Each probabilistic node \(n \in N_p \) with outgoing edges \(n \xrightarrow{p_i,\theta_i} n_i \), for \(1 \leq i \leq k \), contributes one cost relation

\[
C_n(\bar{x}) = \text{cost}(n) + \sum_{i=1}^{k} p_i \cdot C_{n_i}(\bar{x}_i') \bigcup_{i=1}^{k} \theta_i
\]
Generating CRs

- Each regular node $n \in N_r$ with outgoing transitions $n \xleftarrow{\varphi_i} n_i$, $1 \leq i \leq k$, contributes k cost relations of the form

 $$C_n(\bar{x}) = \text{cost}(n) + C_{n_i}(\bar{x}')$$

 φ_i

- Each probabilistic node $n \in N_p$ with outgoing edges $n \xleftarrow{p_i, \theta_i} n_i$, for $1 \leq i \leq k$, contributes one cost relation

 $$C_n(\bar{x}) = \text{cost}(n) + \sum_{i=1}^{k} p_i \cdot C_{n_i}(\bar{x}_i') \bigcup_{i=1}^{k} \theta_i$$
Generating CRs

\[\begin{align*}
C(n) &= 0 & \{n \leq 0\} \\
C(n) &= 1 + \frac{2}{3} D(n') + \frac{1}{3} D(n'') & \{n > 0, \ n' = n - 1, \ n'' = n\} \\
D(n) &= C(n') & \{n' = n\}
\end{align*} \]
Generating CRs

\[C(n) = 0 \quad \{n \leq 0\} \]
\[C(n) = 1 + \frac{2}{3} D(n') + \frac{1}{3} D(n'') \quad \{n > 0, \ n' = n - 1, \ n'' = n\} \]
\[D(n) = C(n') \quad \{n' = n\} \]
Generating CRs

\[C(n) = 0 \quad \{n \leq 0\} \]
\[C(n) = 1 + \frac{2}{3}D(n') + \frac{1}{3}D(n'') \quad \{n > 0, \ n' = n - 1, \ n'' = n\} \]
\[D(n) = C(n') \quad \{n' = n\} \]
Solving (probabilistic) CRs

\[C(n) = 0 \quad \{ n \leq 0 \} \]

\[C(n) = 1 + \frac{2}{3} C(n') + \frac{1}{3} C(n'') \quad \{ n > 0, \; n' = n - 1, \; n'' = n \} \]

\forall n, \varphi_1 \implies f(n) \geq 0

\forall n, n', n'', \varphi_2 \implies f(n) \geq 1 + \frac{2}{3} f(n') + \frac{1}{3} f(n'')
Solving (probabilistic) CRs

\[C(n) = 0 \quad \{ n \leq 0 \} \]
\[C(n) = 1 + \frac{2}{3} C(n') + \frac{1}{3} C(n'') \quad \{ n > 0, \ n' = n - 1, \ n'' = n \} \]

\[\forall n, \varphi_1 \implies f(n) \geq 0 \]
\[\forall n, n', n'', \varphi_2 \implies f(n) \geq 1 + \frac{2}{3} f(n') + \frac{1}{3} f(n'') \]
Solving (probabilistic) CRs

\[\forall n, \varphi_1 \implies f(n) \geq 0 \]

\[\forall n, n', n'', \varphi_2 \implies f(n) \geq 1 + \frac{2}{3} f(n') + \frac{1}{3} f(n'') \]

\[f(n) = a_1 n + a_0 \]

\[\forall n, \varphi_1 \implies a_1 n + a_0 \geq 0 \]

\[\forall n, n', n'', \varphi_2 \implies a_1 n + a_0 \geq 1 + \frac{2}{3} (a_1 n' + a_0) + \frac{1}{3} (a_1 n + a_0) \]

- We use Farkas Lemma to get constraints in terms of \(a_i \) from these equations.
- Solving these equations will give us the values for \(a_i \).
Solving (probabilistic) CRs

\[
\forall n, \varphi_1 \implies f(n) \geq 0
\]

\[
\forall n, n', n'', \varphi_2 \implies f(n) \geq 1 + \frac{2}{3} f(n') + \frac{1}{3} f(n'')
\]

\[
f(n) = a_1 n + a_0
\]

\[
\forall n, \varphi_1 \implies a_1 n + a_0 \geq 0
\]

\[
\forall n, n', n'', \varphi_2 \implies a_1 n + a_0 \geq 1 + \frac{2}{3} (a_1 n' + a_0) + \frac{1}{3} (a_1 n + a_0)
\]

- We use Farkas Lemma to get constraints in terms of \(a_i \) from these equations.
- Solving these equations will give us the values for \(a_i \).
Solving (probabilistic) CRs

\[\forall n, \varphi_1 \implies f(n) \geq 0 \]
\[\forall n, n', n'', \varphi_2 \implies f(n) \geq 1 + \frac{2}{3}f(n') + \frac{1}{3}f(n'') \]

\[f(n) = a_1 n + a_0 \]

\[\forall n, \varphi_1 \implies a_1 n + a_0 \geq 0 \]
\[\forall n, n', n'', \varphi_2 \implies a_1 n + a_0 \geq 1 + \frac{2}{3}(a_1 n' + a_0) + \frac{1}{3}(a_1 n + a_0) \]

- We use Farkas Lemma to get constraints in terms of \(a_i \) from these equations.
- Solving these equations will give us the values for \(a_i \).
Solving (probabilistic) CRs

\[\forall n, \varphi_1 \implies f(n) \geq 0 \]
\[\forall n, n', n'', \varphi_2 \implies f(n) \geq 1 + \frac{2}{3} f(n') + \frac{1}{3} f(n'') \]

\[f(n) = a_1 n + a_0 \]

\[\forall n, \varphi_1 \implies a_1 n + a_0 \geq 0 \]
\[\forall n, n', n'', \varphi_2 \implies a_1 n + a_0 \geq 1 + \frac{2}{3} (a_1 n' + a_0) + \frac{1}{3} (a_1 n + a_0) \]

- We use Farkas Lemma to get constraints in terms of \(a_i \) from these equations.
- Solving these equations will give us the values for \(a_i \).
Solving (probabilistic) CRs

∀n, ϕ₁ → f(n) ≥ 0

∀n, n′, n″, ϕ₂ → f(n) ≥ 1 + \frac{2}{3}f(n′) + \frac{1}{3}f(n″)

f(n) = a₁n + a₀

∀n, ϕ₁ → a₁n + a₀ ≥ 0

∀n, n′, n″, ϕ₂ → a₁n + a₀ ≥ 1 + \frac{2}{3}(a₁n′ + a₀) + \frac{1}{3}(a₁n + a₀)

- We use Farkas Lemma to get constraints in terms of \(a_i\) from these equations.
- Solving these equations will give us the values for \(a_i\).
Upper bound functions must be non-negative.

- We introduce \(\max \) function.
- If we denote
 \[F(n) = \max(0, a_1 n + a_0) \]
 then we will have
 \[\forall n, \varphi_1 \implies F(n) \geq 0 \]
 \[\forall n, n', n'', \varphi_2 \implies F(n) \geq 1 + \frac{2}{3} F(n') + \frac{1}{3} F(n) \]

- Since we are covering the whole state space with the constraints, we have to introduce \(\max \) on both sides of the constraints.
Solving (probabilistic) CRs

Upper bound functions must be non-negative.

- We introduce \max function.
- If we denote
 \[
 F(n) = \max(0, a_1 n + a_0)
 \]
 then we will have

 \[
 \begin{align*}
 \forall n, \varphi_1 & \implies F(n) \geq 0 \\
 \forall n, n', n'', \varphi_2 & \implies F(n) \geq 1 + \frac{2}{3} F(n') + \frac{1}{3} F(n)
 \end{align*}
 \]

- Since we are covering the whole state space with the constraints, we have to introduce \max on both sides of the constraints.
Solving (probabilistic) CRs

\[
\forall n, \varphi_1, a_1 n + a_0 < 0 \implies 0 \geq 0
\]
\[
\forall n, \varphi_1, a_1 n + a_0 \geq 0 \implies a_1 n + a_0 \geq 0
\]

\[
\forall n, n' \varphi_2, a_1 n + a_0 < 0, a_1 n' + a_0 \geq 0
\]
\[
\implies 0 \geq 1 + \frac{2}{3} (a_1 n' + a_0)
\]
\[
\forall n, n' \varphi_2, a_1 n + a_0 \geq 0, a_1 n' + a_0 < 0
\]
\[
\implies a_1 n + a_0 \geq 1 + \frac{1}{3} (a_1 n + a_0)
\]
\[
\forall n, n' \varphi_2, a_1 n + a_0 \geq 0, a_1 n' + a_0 \geq 0
\]
\[
\implies a_1 n + a_0 \geq 1 + \frac{2}{3} (a_1 n' + a_0) + \frac{1}{3} (a_1 n + a_0)
\]

- Constraints on the left side of the implication lead us to non-linearity.
- We are in trouble with applying Farkas Lemma.
Contraints on the left side of the implication lead us to non-linearity.

We are in trouble with applying Farkas Lemma.
Solving (probabilistic) CRs

\[\forall n, \varphi_1, a_1 n + a_0 < 0 \implies 0 \geq 0 \]
\[\forall n, \varphi_1, a_1 n + a_0 \geq 0 \implies a_1 n + a_0 \geq 0 \]
\[\forall n, n' \varphi_2, a_1 n + a_0 < 0, a_1 n' + a_0 \geq 0 \]
\[\implies 0 \geq 1 + \frac{2}{3}(a_1 n' + a_0) \]
\[\forall n, n' \varphi_2, a_1 n + a_0 \geq 0, a_1 n' + a_0 < 0 \]
\[\implies a_1 n + a_0 \geq 1 + \frac{1}{3}(a_1 n + a_0) \]
\[\forall n, n' \varphi_2, a_1 n + a_0 \geq 0, a_1 n' + a_0 \geq 0 \]
\[\implies a_1 n + a_0 \geq 1 + \frac{2}{3}(a_1 n' + a_0) + \frac{1}{3}(a_1 n + a_0) \]

- Constraints on the left side of the implication lead us to non-linearity.
- We are in trouble with applying Farkas Lemma.
Example: infinite expected cost

while $(n > 0)$ {
 $n = n - 1$; $\oplus \frac{1}{2} \ n = n + 1$;
}

Alicia Merayo and Samir Genaim

Inference of Linear Upper-Bounds on the Expected Cost by Solving Cost Relations
Example: infinite expected cost

```
while (n > 0){
    n = n - 1; ⊕ \frac{1}{2} n = n + 1;
}
```

```
\begin{tikzpicture}
    \node (n) at (0,0) {n > 0};
    \node (n_minus_1) at (1,-1) {n = n - 1};
    \node (plus_half) at (2,-2) {⊕ \frac{1}{2} n = n + 1};
    \node (n_minus_1_plus_half) at (3,-3) {n ≤ 0};
    \node (end) at (4,-4) {1};
    \draw[->] (n) -- (n_minus_1);
    \draw[->] (n_minus_1) -- (plus_half);
    \draw[->] (plus_half) -- (n_minus_1_plus_half);
    \draw[->] (n_minus_1_plus_half) -- (end);
\end{tikzpicture}
```
while \((x + 3 \leq n)\) {
 if \((y < m)\)
 skip; \(\oplus_{\frac{1}{2}} y = y + 1;\)
 else
 skip; \(\oplus_{\frac{1}{4}} x = x + 1; \oplus_{\frac{1}{4}} x = x + 2; \oplus_{\frac{1}{4}} x = x + 3;\)
 tick(1);
}

\[f(x, y, n, m) = \max(0, a_1 x + a_2 y + a_3 n + a_4 m + a_0) \]

If we use this global template... we will fail.
Multiphase example

while \((x + 3 \leq n)\)\{
 if \((y < m)\)
 skip; \(\uparrow_{\frac{1}{2}} y = y + 1;\)
 else
 skip; \(\uparrow_{\frac{1}{4}} x = x + 1; \uparrow_{\frac{1}{4}} x = x + 2; \uparrow_{\frac{1}{4}} x = x + 3;\)
 tick(1);
}\}

\[f(x, y, n, m) = \max(0, a_1 x + a_2 y + a_3 n + a_4 m + a_0) \]

If we use this global template... we will fail.
while \((x + 3 \leq n)\) do
 if \((y < m)\) then
 skip; \(\oplus_{1/2} y = y + 1\);
 else
 skip; \(\oplus_{1/4} x = x + 1; \oplus_{1/4} x = x + 2; \oplus_{1/4} x = x + 3\);
 tick(1);
end

\(f(x, y, n, m) = \max(0, a_1 x + a_2 y + a_3 n + a_4 m + a_0)\)

If we use this global template... we will fail.
while \((x + 3 \leq n)\)\
 \(\text{if } (y \leq m)\)\
 \(\text{skip}; \oplus_{\frac{1}{2}} y = y + 1;\)\
 \(\text{else}\)\
 \(\text{skip}; \oplus_{\frac{1}{4}} x = x + 1; \oplus_{\frac{1}{4}} x = x + 2; \oplus_{\frac{1}{4}} x = x + 3;\)\
 \(\text{tick}(1);\)
\
We can start from a template that includes two parts (one for each phase).

\[f(x, y, n, m) = \max(0, a_1 x + a_2 y + a_3 n + a_4 m + a_0) + \max(0, b_1 x + b_2 y + b_3 n + b_4 m + b_0) \]
while \((x + 3 \leq n)\) {
 if \((y < m)\)
 skip; \(\oplus_{1/2} y = y + 1;\)
 else
 skip; \(\oplus_{1/4} x = x + 1; \oplus_{1/4} x = x + 2; \oplus_{1/4} x = x + 3;\)
 tick(1);
}

We can start from a template that includes two parts (one for each phase).

\[
f(x, y, n, m) = \max(0, a_1 x + a_2 y + a_3 n + a_4 m + a_0) + \max(0, b_1 x + b_2 y + b_3 n + b_4 m + b_0)
\]
Multithreaded example

\[\varphi_1 = \{x + 3 \leq n\} \cup \varphi_5 \]
\[\varphi_2 = \{x + 3 > n\} \cup \varphi_5 \]
\[\varphi_3 = \{y < m\} \cup \varphi_5 \]
\[\varphi_4 = \{y' \geq m\} \cup \varphi_5 \]
\[\varphi_5 = \{x' = x, n' = n, y' = y, m' = m\} \]
\[\varphi_6 = \{x' = x, n' = n, y' = y + 1, m' = m\} \]
\[\varphi_7 = \{x' = x + 1, n' = n, y' = y, m' = m\} \]
\[\varphi_8 = \{x' = x + 2, n' = n, y' = y, m' = m\} \]
\[\varphi_9 = \{x' = x + 3, n' = n, y' = y, m' = m\} \]
Conclusions

- Our interest is to extend SACO to handle probabilistic programs.
- We have extended the CFGs to have probabilities.
- We have modeled the expected cost of CFGs with (probability) CRs.
- We have developed a technique for solving such CRs.
- Correctness: based on Farkas Lemma and Markov Decision Processes.