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language-specific features when generating symbolic execution graph

back-end analyzes Integer Transition Systems and/or Term Rewrite Systems

powerful termination analysis

Termination Competition since 2004 (Java, C, Haskell, Prolog, TRS)

SV-COMP since 2014 ( C )



AProVE for Complexity Analysis
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Why worst-case lower bounds?

tight bounds

detect bugs

detect potential attacks
(DoS)
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ITS: • alternate inference of size and time upper bounds (TACAS’14, TOPLAS’16)

• lower bounds by adapting ranking functions (IJCAR’16)

TRS: • upper bounds for innermost rewriting by dep. pairs (CADE’11, JAR’13)

• use upper innermost bounds also for full rewriting (LPAR’17)

• semi-decision procedure for constant upper bounds (IPL’18)

• infer upper bounds for TRSs by ITSs (FroCoS’17)

• lower bounds by induction or syntactic criteria (RTA’15, JAR’17)

Prolog: • infer upper bounds for Prolog from complexity of TRSs (PPDP’12)

Java: • adapt transformation of Java to ITSs for upper bounds (iFM’17)

C: • upper bounds for bitvector programs (JLAMP’18)


