
AProVE: Automated Program Verification Environment

Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

joint work with

C. Aschermann, M. Brockschmidt, F. Emmes, S. Falke, F. Frohn, C. Fuhs,

M. Hark, J. Hensel, M. Naaf, L. Noschinski, P. Schneider-Kamp, T. Ströder, . . .

AProVE for Termination Analysis

Java

C

Haskell

Prolog

Symbolic
Execution

Graph

ITS

TRS

KoAT Worst-Case Upper Bounds

Worst-Case Lower Bounds

Best-Case Lower BoundsTermination

︸ ︷︷ ︸
Front-End

︸ ︷︷ ︸
Back-End

language-specific features when generating symbolic execution graph

back-end analyzes Integer Transition Systems and/or Term Rewrite Systems

powerful termination analysis

Termination Competition since 2004 (Java, C, Haskell, Prolog, TRS)

SV-COMP since 2014 (C)

AProVE for Complexity Analysis

Java

C

Haskell

Prolog

Symbolic
Execution

Graph

ITS

TRS

KoAT

Termination

Worst-Case Upper Bounds

Worst-Case Lower Bounds

Best-Case Lower Bounds

︸ ︷︷ ︸
Front-End

︸ ︷︷ ︸
Back-End

input size

ru
n

ti
m

e

Why worst-case lower bounds?

tight bounds

detect bugs

detect potential attacks
(DoS)

AProVE for Complexity Analysis

Java

C

Haskell

Prolog

Symbolic
Execution

Graph TRS

ITS

KoAT

LoAT
Termination

Worst-Case Lower Bounds

Worst-Case Upper Bounds

︸ ︷︷ ︸
Front-End

︸ ︷︷ ︸
Back-End

ITS: • alternate inference of size and time upper bounds (TACAS’14, TOPLAS’16)

• lower bounds by adapting ranking functions (IJCAR’16)

TRS: • upper bounds for innermost rewriting by dep. pairs (CADE’11, JAR’13)

• use upper innermost bounds also for full rewriting (LPAR’17)

• semi-decision procedure for constant upper bounds (IPL’18)

• infer upper bounds for TRSs by ITSs (FroCoS’17)

• lower bounds by induction or syntactic criteria (RTA’15, JAR’17)

Prolog: • infer upper bounds for Prolog from complexity of TRSs (PPDP’12)

Java: • adapt transformation of Java to ITSs for upper bounds (iFM’17)

C: • upper bounds for bitvector programs (JLAMP’18)

